Greendelta

sustainability consulting + software

The Importance of a Three-dimension Approach in LCA. A Screening Study on Mining addressing Environmental, Social and Cost Aspects

Claudia Di Noi, Andreas Ciroth GreenDelta GmbH, Germany

ACLCA, LCA XVIII Conference, Fort Collins, CO, 26th September 18

The meaningfulness of a LCA screening study

- 1. Prioritize efforts and resources -> **key issues**
- 2. Better shape the G&S of the study -> **sustainability hotspots**

WHY?

- Burdens may be shifted from one dimension to another
- Indicators, impact categories and outcomes may be complementary, overlapping and/or contradictory

BOLIDEN

GreenDeLTa

AngloAmerican

brgm

Integrated Mineral Technologies for more Sustainable Raw Material Supply

- H2020 issue "Sustainable selective low impact mining"
- 3 years: 1.6.2017 31.5.2020

Screening approach

E-LCA

Finland, Portugal, South Africa, Europe, Latin America

ecoinvent, EXIOBASE

LCIAM

Db

Areas

rocess

ILCD 2011 Midpoint+, ReCiPe, Boulay et al. (2011), CML-IA baseline, EXIOBASE built-in LCIAM

ecoinvent-> copper mine operation, copper production, primary; EXIOBASE -> copper ores and concentrates **S-LCA** Finland, Portugal

PSILCA

Social impacts weighting method in PSILCA

Metal ores

LCC

Finland, Portugal, South Africa, Brazil, US, Europe, Latin America

ecoinvent + literature research

Added value calculation, engineering principles

Mine construction, underground and open cast; copper mine operation; copper production, primary

The context of the mining activity

- Vulnerability of local communities, e.g. their dependence on local water reserves
- Availability and quality of water and mineral resources
- Conflicts with other industries
- Importance of mining for the local/national economy
- Risks on a national scale (not sector-specific)
- Steadiness of risks/impacts

Results: E-LCA screening

• Copper production, primary, RER, ecoinvent

Normalization set "EU 27 ILCD Midpoint+, 2010"

Normalization	Impact category IE Freshwater ecotoxicity - ILCD 2011 Midpoint+ ✓
Impact category	a
Freshwater ecotoxicity - ILCD 2011 Midpoint+ Human toxicity, non-cancer effects - ILCD 2011 Midpoint+ Human toxicity, cancer effects - ILCD 2011 Midpoint+ Freshwater eutrophication - ILCD 2011 Midpoint+ Mineral, fossil & ren resource depletion - ILCD 2011 Midpoint+ Particulate matter - ILCD 2011 Midpoint+ Photochemical ozone formation - ILCD 2011 Midpoint+ Terrestrial eutrophication - ILCD 2011 Midpoint+	Contribution Process 100.00% copper production, primary copper Cutoff, U - RER 97.12% copper mine operation, sulfide ore copper concentrate, sulfide ore Cutoff, U - RER 95.62% market for sulfidic tailing, off-site sulfidic tailing, off-site Cutoff, U - GLO 95.62% market for sulfidic tailing, off-site sulfidic tailing, off-site Cutoff, U - GLO 90.48% market for steel, chromium steel 18/8, hot rolled steel, chromium steel 18/8, hot rolled Cutoff, U - GLO 00.48% Impact category Human toxicity, non-cancer effects - ILCD 2011 Midpoint+
Marine eutrophication - ILCD 2011 Midpoint+ Acidification - ILCD 2011 Midpoint+ Land use - ILCD 2011 Midpoint+ Climate change - ILCD 2011 Midpoint+ Water resource depletion - ILCD 2011 Midpoint+	Contribution Process v 100.00% copper production, primary copper Cutoff, U - RER v 87.88% copper mine operation, sulfide ore copper concentrate, sulfide ore Cutoff, U - RER v 86.10% market for sulfidic tailing, off-site sulfidic tailing, off-site Cutoff, U - GLO s6.10% market for sulfidic tailing, off-site sulfidic tailing, off-site Cutoff, U - GLO market for mine infractucture open catt pop-ferrour metal Cutoff L_6 GLO

• Copper ores and concentrates, Finland, EXIOBASE

Name	Category	
✓ ↓ Water Withdrawal Blue - Total		
> P Electricity by gas - RU	EXIOBASE / Russian Federation	•
> P Electricity by nuclear - RU	EXIOBASE / Russian Federation	I.
> P Electricity by petroleum and other oil derivatives - EE	EXIOBASE / Estonia	I
> P Electricity by biomass and waste - Fl	EXIOBASE / Finland	I
> P Plastics, basic - Fl	EXIOBASE / Finland	I
> P Paper and paper products - FI	EXIOBASE / Finland	I
✓ IE Water Withdrawal Blue - Manufacturing		
> P Plastics, basic - Fl	EXIOBASE / Finland	I.
> P Paper and paper products - FI	EXIOBASE / Finland	l.
> P Chemicals nec - Fl	EXIOBASE / Finland	1
> P - and other fertiliser - Fl	EXIOBASE / Finland	I.
✓ IE Water Consumption Blue - Manufacturing		
> P Plastics, basic - Fl	EXIOBASE / Finland	I.
> P Paper and paper products - FI	EXIOBASE / Finland	I.
> P Chemicals nec - Fl	EXIOBASE / Finland	1

Impact localization: Water withdrawal - Manufacturing

Results: S-LCA screening

• Metal ores, Finland, PSILCA

0	mpact category	∎∃ Indust	rial water depletion 🗸 🗸	
Co	ontribution	Process		
~	100.00%		Metal ores - Fl	
	> 77.89%		Manufacture of basic metals - Fl	
	> 17.00%	-	Manufacture of chemicals and chemical products - FI	
	> 00.20%		Iron and steel mills and ferroalloy manufacturing - US	
	> 00.17%		Non-ferrous metals - CA	
	> 00.11%		Extraction of crude petroleum and natural gas; service act	tivities
	00.110/			

> 00.11% Extraction of crude petroleum and natural gas; service activities incidental to oil and gas extraction excluding surveying - EE
 > 00.11% Basic ferrous metals - DE

• Metal ores, Portugal, PSILCA

GreenDelta

Results: LCC screening

• Copper mine operation, sulfide ore, RER, ecoinvent

Cost category \$¥ Added value

Contribution	Process		#1
✓ 100.00%		copper mine operation, sulfide ore copper concentrate, sulfide ore Cutoff, U - RER	
> 02.69%	1	electricity production, hydro, run-of-river electricity, high voltage Cutoff, U - RoW	
> 02.03%	1	market for aluminium hydroxide factory aluminium hydroxide factory Cutoff, U - GLO	E.
> 01.66%		market for blasting blasting Cutoff, U - GLO	15
> 01.43%		market group for electricity, medium voltage electricity, medium voltage Cutoff, U - RER	
> 00.71%		market for steel, chromium steel 18/8, hot rolled steel, chromium steel 18/8, hot rolled Cutoff, U - GLO	
> 00.63%		market for chemical, organic chemical, organic Cutoff, U - GLO	

• LCC beyond databases

- 1. Cost Breakdown Structure
- 2. Location factors
- 3. Cost indexes
- 4. Scaling factors for equipment cost
- Sensitivity analysis for energy cost in different countries

OPERATING COST ESTIMATION (MINING IN US)

- Equipment operation
- Blasting
- Tailings and waste rock management
- Energy supply
- Chemicals

Results: summary and interpretation

E-LCA

- Hotspots: electricity and tailings management
- 2. Toxicity categories
- Impacts are not globally widespread
- 4. Differences in location

S-LCA

- Importance of the supply chain (China, India)
- Hotspots: machineries, chemicals and basic metals manufacturing
- 3. Local communities
- Potential
 opportunities
 (employment, fair salary)

LCC

- Hotspots: energy and tailings and waste rock handling
- 2. Costs vary by region and country
- Costs are influenced by the scale of the mine and type of ore
- 4. Difficult to collect data

Complementarity, overlapping and tradeoffs

Where are the limitations

- Data quality (old data, technical conformance)
- Different data sources (gaps, assumptions, harmonization)
- Background data should always be related to the context
- The LCA screening results should be complemented with other tools, e.g. literature, causal loop diagram

Name		С	Т	G	F
Contribution to environmental load		2	2	1	1
Social responsibility along the supply chain		4	2	1	2
▷ I Public sector corruption	4	3	1	1	
E Certified environmental management system	1	4	2	1	3
▷ I	2	1	4	1	5
▷ I Industrial water depletion	2	2	5	1	5
▷ I Sanitation coverage	2	2	2	1	
Trade unionism		2	4	1	5
Safety measures		2	1	4	2
▷ I Non-fatal accidents	2	3	4	1	2
▷ IE Active involvement of enterprises in corruption and bribery		2	2	2	3
Drinking water coverage		1	2	1	
Trafficking in persons		1	1	1	
▷ I Biomass consumption	2	1	4	1	5
▷ ■ Pollution	3	3	1	1	5
▷ E Fair Salary	2	2	2	1	1
▷ I = Health expenditure	1	1	4	1	
▶ E Anti-competitive behaviour or violation of anti-trust and monopoly legislatio		2	5	1	2
▷ I = Fatal accidents	2	2	5	1	2

Impact results, data quality -Metal ores, Finland, PSILCA

Conclusions and further development

- Valuable **inputs** to the project
- Environmental and cost impacts end up in impacts on social stakeholders
- The social dimension is the most difficult to measure
- If one or two dimensions had been excluded, an incomplete picture of the impacts would have been provided
- **Dialogue** among the project partners

References

- ITERAMS: Integrated Mineral Technologies for More Sustainable Raw Material Supply, Accessed 16.08.2018, <u>http://www.iterams.eu/</u>
- Kinnunen, P., Raatikainen, J., Emler, R., Guignot, S., Ciroth, A., Guimerà, J., Paajanen, P., Heiskanen, K.Towards closed water loops, ore sorting and tailings valorization for more sustainable raw material supply. Presentation in Sustainable Minerals 2018.
- Ecological statuts of surface water in Portugal, slide 6. Available at: <u>https://snirh.apambiente.pt/index.php?idMain=1&idItem=1.5. L</u>ast accessed: 15.08.18
- Ecological status of surface waters in Finland, slide 6. Available at: <u>http://www.ymparisto.fi/en-US/Waters/State_of_the_surface_waters</u>. Last accessed: 15.08.18
- Mancini L., Sala, S. (2018) Social impact assessment in the mining sector: Review and comparison of indicators frameworks, Resources Policy 57 (2018) 98–111
- Eisfeldt, F., December 2017, PSILCA A Product Social Impact Life Cycle Assessment database. Documentation, Accessed 13.12.2017, online available at <u>http://www.openlca.org/wp-</u> content/uploads/2017/12/PSILCA documentation update PSILCA v2 final.pdf
- ILO (2017) Quick guide on sources and uses of labour statistics. Geneva, Switzerland. ISBN: 978-92-2-130119-6

Thank you!

Greendelta

sustainability consulting + software

Contact Claudia Di Noi GreenDelta GmbH Müllerstrasse 135, 13349 Berlin <u>dinoi@greendelta.com</u> www.greendelta.com